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▶ This talk will be organised as follows:
Multiplier algebras −→ multiplier Hopf algebras
−→ Graph algebras −→ Graph C ∗ − algebras

−→ the associatted Cuntz − Krieger graph families
−→ multiplier Hopf ∗ −graph algebras
−→ quantum symmetries −→ · · ·

▶ At the end, I will propose some open directions.
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▶ Mathematics is all about finding patterns, structures,
relations, and the hidden symmetries,

▶ and in order to proceed we try to study toy models (or better
to say toy examples).

▶ One of these examples is the quantum n × n matrices and
their coordinate ring K[Mq(n)],

▶ and the other one is an infamous set of directed graphs and
the associated undirected ones, on which we partially will try
to study!
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Quantum matrix algebra

▶ Note that by K[Mq(n)] we mean the associative algebra over
K generated by n2 elements Xij , i , j = 1, 2, . . . , n, with
relations

▶

XriXrj = q−1XrjXri , ∀i < j ;

XriXsi = q−1XsiXri , ∀r < s;

XriXsj = XsjXri , if r < s and i > j ; (1)

XriXsj − XsjXri = q̂XsiXrj , if r < s and i < j ,

where we have q̂ = q−1 − q.
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From nonunital to unital algebras

▶ As my knowledge supports, the category of Hopf algebras are
divided into two separate categories finite and infinite
dimensional Hopf algebras.

▶ Take G to be any (compact) group.

▶ In this talk we mostly are interested in C (G ), the space of
continuous complex valued functions on G .

▶ As it is already known, for G a finite group, we have
C (G )⊗ C (G ) ∼= C (G × G ) : f1 ⊗ f2 7→ (f1 ⊗ f2)(g1, g2) :=
f1(g1)f2(g2), for f1, f2 ∈ C (G ) and g1, g2 ∈ G .

▶ But this no longer works when G is an infinite dimensional
group, and this is exactly the place where the introduction of
multiplier Hopf algebras came to assist us!
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From nonunital to unital algebras

▶ Let Cf (G ) be the space of continuous functions on G with
finite support.

▶ We know that relation Cf (G )⊗ Cf (G ) ∼= Cf (G × G ) satisfies
for this space of functions.

▶ In our first paper we reproved that the multiplier algebra
M(Cf (G )) is equal to C (G ) for G being any group, finite or
infinite.
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Multiplier Hopf algebras

▶ At this point, allow us to have some self distraction, and have
a quick look at the theory of multiplier Hopf algebras.

▶ Let A be a unital or non-unital algebra, over the field of
complex numbers with non-degenerate product.

▶ Then we can consider the multiplier algebra M(A).

▶ Which is characterized as the largest algebra containing A as
a dense ideal.

▶ By dense we mean that for m ∈ M(A), and all a ∈ A, if either
ma = 0, or am = 0, then we have m = 0.

▶ Note that if already A has an identity, then M(A) = A.
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Multiplier Hopf algebras

▶ If A is nondegenerate, then the tensor product A⊗ A is again
a nondegenerate algebra and we have the multiplier algebra
M(A⊗ A).

▶ Then one may define a coproduct on A as a coassociative
homomorphism ∆ : A→ M(A⊗ A), such that the canonical
maps T1 and T2 defined on A⊗ A by

T1(a⊗ b) = ∆(a)(1⊗ b) and T2(a⊗ b) = (a⊗ 1)∆(b),

have range in A⊗ A and are bijective,

▶ and the following coassociativity condition

(a⊗1⊗1)(∆⊗id)(∆(b)(1⊗c)) = (id⊗∆)((a⊗1)∆(b))(1⊗1⊗c)

for all a, b and c in A and id : A→ A the identity map,
satisfies.
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Multiplier Hopf algebras

▶ One may see that the above definition of the coassociativity
coincides with the original condition of coassociativity if the
algebra has a unit.

▶ Then the pair (A,∆) will be called a multiplier Hopf algebra if
the maps T1 and T2 are bijective from A⊗ A to itself.
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Multiplier Hopf algebras

▶ Note that Cf (G ) was the only known example of multiplier
Hopf algebras, until recently that another one came up in a
paper by Vaes-Rolier posted on arXiv in late 2022, and revised
early 2023,

▶ stating that for U = (uij)i ,j the commuting matrix with the
adjacency matrix associated with the locally finite directed
graph Γ, and if U is a non-commutative magic unitary,

▶ then the algebra A consisting of the entries uij , together with
∆ : A→ A⊗ A : uij 7→

∑
k

uik ⊗ ukj will be a multiplier Hopf

algebra.

▶ Matrix U = (uij)i ,j with entries uijs from a non-trivial unital
C ∗-algebra satisfying relations uij = u∗ij = u2ij and∑n

k=1 ukj =
∑n

k=1 uik = 1, will be called a magic unitary.

▶ This result is nice, but we been looking for something else!



Multiplier Hopf algebras

▶ Note that Cf (G ) was the only known example of multiplier
Hopf algebras, until recently that another one came up in a
paper by Vaes-Rolier posted on arXiv in late 2022, and revised
early 2023,

▶ stating that for U = (uij)i ,j the commuting matrix with the
adjacency matrix associated with the locally finite directed
graph Γ, and if U is a non-commutative magic unitary,

▶ then the algebra A consisting of the entries uij , together with
∆ : A→ A⊗ A : uij 7→

∑
k

uik ⊗ ukj will be a multiplier Hopf

algebra.

▶ Matrix U = (uij)i ,j with entries uijs from a non-trivial unital
C ∗-algebra satisfying relations uij = u∗ij = u2ij and∑n

k=1 ukj =
∑n

k=1 uik = 1, will be called a magic unitary.

▶ This result is nice, but we been looking for something else!



Multiplier Hopf algebras

▶ Note that Cf (G ) was the only known example of multiplier
Hopf algebras, until recently that another one came up in a
paper by Vaes-Rolier posted on arXiv in late 2022, and revised
early 2023,

▶ stating that for U = (uij)i ,j the commuting matrix with the
adjacency matrix associated with the locally finite directed
graph Γ, and if U is a non-commutative magic unitary,

▶ then the algebra A consisting of the entries uij , together with
∆ : A→ A⊗ A : uij 7→

∑
k

uik ⊗ ukj will be a multiplier Hopf

algebra.

▶ Matrix U = (uij)i ,j with entries uijs from a non-trivial unital
C ∗-algebra satisfying relations uij = u∗ij = u2ij and∑n

k=1 ukj =
∑n

k=1 uik = 1, will be called a magic unitary.

▶ This result is nice, but we been looking for something else!



Multiplier Hopf algebras

▶ Note that Cf (G ) was the only known example of multiplier
Hopf algebras, until recently that another one came up in a
paper by Vaes-Rolier posted on arXiv in late 2022, and revised
early 2023,

▶ stating that for U = (uij)i ,j the commuting matrix with the
adjacency matrix associated with the locally finite directed
graph Γ, and if U is a non-commutative magic unitary,

▶ then the algebra A consisting of the entries uij , together with
∆ : A→ A⊗ A : uij 7→

∑
k

uik ⊗ ukj will be a multiplier Hopf

algebra.

▶ Matrix U = (uij)i ,j with entries uijs from a non-trivial unital
C ∗-algebra satisfying relations uij = u∗ij = u2ij and∑n

k=1 ukj =
∑n

k=1 uik = 1, will be called a magic unitary.

▶ This result is nice, but we been looking for something else!



Multiplier Hopf algebras

▶ Note that Cf (G ) was the only known example of multiplier
Hopf algebras, until recently that another one came up in a
paper by Vaes-Rolier posted on arXiv in late 2022, and revised
early 2023,

▶ stating that for U = (uij)i ,j the commuting matrix with the
adjacency matrix associated with the locally finite directed
graph Γ, and if U is a non-commutative magic unitary,

▶ then the algebra A consisting of the entries uij , together with
∆ : A→ A⊗ A : uij 7→

∑
k

uik ⊗ ukj will be a multiplier Hopf

algebra.

▶ Matrix U = (uij)i ,j with entries uijs from a non-trivial unital
C ∗-algebra satisfying relations uij = u∗ij = u2ij and∑n

k=1 ukj =
∑n

k=1 uik = 1, will be called a magic unitary.

▶ This result is nice, but we been looking for something else!



Quantum permutation group S+
n

▶ For n ∈ N, G = (A, u) will be called a compact matrix
quantum group (CMQG ) if

1. A = C∗(1, uij , 1 ≤ i , j ≤ n),
2. u = (uij)i,j=1,··· ,n, ū = (u∗ij )i,j=1,··· ,n ∈ Mn(A) are

invertible,

3. ∆ : A→ A⊗ A : uij 7→
n∑

k=1

uik ⊗ ukj is a ∗-homomorphism.

▶ Compact matrix quantum groups were the earliest subclass
(appeared in 1987) of the class of compact quantum groups
(rigorously defined in 1995).

▶ A compact quantum group G is a pair (A,∆), for A a
C ∗-algebra and ∆ a unital ∗-homomorphism from A to A⊗ A
satisfying in the coassociativity relation

(∆⊗ id) ◦∆ = (id ⊗∆) ◦∆

and the cancellation properties.
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Quantum permutation group S+
n , continuation

▶ But our concern was more about the compact quantum
groups arising from the (semi-)group algebras.

▶ For the compact group G , one can see CG as the group
C ∗-algebra associated with G , consisting of the set of finite
linear combinations

∑
g∈G cgg , for cg ∈ C, with the

multiplication adopted from the group multiplication and
equipped with the involution (

∑
cgg)

∗ :=
∑

cgg
−1

▶ isomorphic with the universal C ∗-algebra

C ∗ (cg |cg unitary, cgch = cgh, c
∗
g = cg−1

)
.
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Quantum permutation group S+
n , continuation

▶ Following the above discussion, and in order to provide an
answer to a question by Connes, asking

‘‘if there are quantum permutation groups,

and what would be they look like?’’

▶ in the late nineties, Wang came with an answer, saying that

“the quantum permutation group S+
n

could be defined as the largest compact

quantum group acting on the set {1, . . . ,N}”
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Quantum permutation group S+
n , continuation

▶ by looking at it as the compact set XN := {x1, . . . , xN}
consisting of a finite set of points (pointwise isomorphic) and
studying its function space

C (XN) ≡ C ∗
(
p1, · · · , pN projections |

∑N
i=1 pi = 1

)
.

▶ This has led him to define C (S+
n ) as the following universal

C ∗-algebra

C ∗

(
uij , i , j = 1, · · · , n | uij = u∗ij = u2ij ,

n∑
k=1

ukj =
n∑

k=1

uik = 1

)
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Quantum permutation group S+
n , continuation

▶ and calling S+
n = (C (S+

n ), u) the quantum symmetric
(permutation) group as the quantum automorphism group of
XN , and proving that it satisfies the relations of being a
compact (matrix) quantum group in the sense of Woronowicz.

▶ The main ingredients in defining C (S+
n ), meaning that the

uijs, are very important in our construction of the multiplier
Hopf (∗-)graph algebras.
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C ∗-graph algebras

▶ We got the idea from the C ∗-graph algebras, which are not
graphs but something associated with graphs, as in the case
of Vaes-Rolier’s construction.

▶ ‌But what are C ∗-graph algebras?

▶ To deal with them, one first needs to know about the
Cuntz-Krieger graph families.
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Cuntz-Krieger Algebras

▶ To a directed graph Γ, one can associate a C ∗-algebra
C ∗(Γ0, Γ1) := C ∗(Γ) by associating to its set of edges Γ1 a set
of partial isometries and to its set of vertices Γ0 a set of
pairwise orthogonal projections satisfying in some specific
relations, studied first by Cuntz and Krieger in 1980, as a
generalization of the Cuntz algebras.

▶ For a finite or infinite-dimensional Hilbert space H, the set of
mutually orthogonal projections pv ∈ H for all v ∈ Γ0

together with partial isometries se ∈ H for all e ∈ Γ1

satisfying the relations

▶ 1. s∗e se = pr(e) for all edges e ∈ Γ1,
2. pv =

∑
s(e)=v ses

∗
e for the case when v ∈ Γ0 is not a sink,

▶ will be called a Cuntz-Krieger Γ-family in B(H),
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Graph C ∗-algebra of a finite directed graph

▶ and we have the following definitions:

▶ For n × n matrix Π ∈ Mn({0, 1}), the Cuntz-Krieger algebra
KΠ will be defined as the (nondegenerate) C ∗-algebra
generated by a universal Cuntz-Krieger Γ-family si for
i ∈ {1, · · · , n} satisfying in s∗i si =

∑n
j=1 aijsjs

∗
j .

▶ For finite directed graph Γ = (Γ0, Γ1), the graph C ∗-algebra
C∗(Γ) is the universal C ∗-algebra generated by a
Cuntz-Krieger Γ-family {Pv , Se}.
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Quantum matrix algebra

▶ It is already known that one can associate a directed graph to
the set of defining relations of K[Mq(n)] by using the
following rules:

▶ We have
uij
−→∼ukℓ if and only if the following conditions are satisfied

▶

1. i = k and j < ℓ,
2. i < k and j = ℓ,
3. i < k and j > ℓ,

▶ and we have uij
←→∼ ukℓ if and only if i > k and j < ℓ.
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▶ For example, for K[Mq(2)] we can associate the following
directed graph on which we call G(Π2) := G2:

▶

x11

x12

x22

x21

Figure 1: Directed locally connected graph related to K (Mq(2))
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Figure 2: Illustration of the some sort of triangulation in G2 and G3



Figure 3: Illustration of the some sort of triangulation in G4



Figure 4: Illustration of the some sort of triangulation in G5



Graph C ∗-algebra of a finite directed graph
▶ For graph G2 associated with K[Mq(2)], consider its set of

vertices and edges as
G0 = {x11 := u, x12 := v , x22 := k , x21 := w} and
G1 = {x11−→∼x12 := e, x11

−→∼x21 := f , x12
−→∼x22 :=

h, x21
−→∼x22 := g , x12

−→∼x21 := i , x21
−→∼x12 := j}, we have the

following Proposition.

▶ For Π2 as before, and G2 = (G02 ,G12) the associated adjacency
matrix, and let H := ℓ2(N) be the underlying infinite
dimensional Hilbert space. Then the set

S = {Se :=
∞∑
n=1

E6n,3n−2,Sf :=
∞∑
n=1

E6n−4,3n−2,Sh :=
∞∑
n=1

E6n−3,3n,

Sg :=
∞∑
n=1

E6n−4,3n−1,Si :=
∞∑
n=1

E6n−1,3n,Sj :=
∞∑
n=1

E6n−3,3n−1}

(2)

is a Cuntz-Krieger G(Π2)-family and gives us an infinite
dimensional graph C ∗-algebra structure C∗(Π2).
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Graph C ∗-algebra of a finite directed graph

▶ Let πn be the commuting matrices with Πn and nG be the
associated graphs.

▶ For graph 2G associated with π2, as before consider its set of
vertices and edges as

2G0 = {x11 := v1, x12 := v2, x22 := v3, x21 := v4} and
2G1 = {x11−→∼x11 := e11, x12

−→∼x21 := e24, x21
−→∼x12 :=

e42, x22
−→∼x22 := e33}, we have the following Proposition.

▶ For 2G := (2G0, 2G1) as above, consider H be the underlying
Hilbert space, that can be finite or infinite. Then the set

S = {Se11 := E2,1,Se24 := E4,1,

Se42 := E1,4,Se33 := E3,1} (3)

is a Cuntz-Krieger 2G-family and gives us a graph C ∗-algebra
structure C∗(π2) := M4(C).
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Multiplier Hopf ∗-graph algebras

▶ As I already said, from the different kinds of graph algebras,
the one that we are interested in should be nondegenerate,
and we thought that the ∗-monoid algebra G consisting of
graphs associated with πn the commuting commutative
matrices with Πn’s, and the identity element 2G, illustrated in
Figure 5.



Figure 5: Illustration of the set of n − 1 graphs iG



Multiplier Hopf ∗-graph algebras

▶ But the question was how?

▶ At this point we had a slightly smooth result based on the
work of Rollier-Vaes, as follows
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Multiplier Hopf ∗-graph algebras

▶ For Π, a locally finite connected graph associated with
coordinate algebra K (Mq(n)) with vertex set
{x11, x12, · · · , xij} for i , j ∈ {1, 2, · · · , n} and the index set
I := {11, 12, · · · , ij}, there exists a unique universal
nondegenerate ∗-algebra A generated by elements (uhh′)h,h′∈I ,
satisfying the relations of quantum permutation groups, and a
unique nondegenerate ∗-homomorphism ∆ : A → M(A⊗A)
satisfying ∆(uhh′) =

∑
k∈I (uhk ⊗ ukh′) for all h, h

′ ∈ I , such
that the pair (A,∆) is a multiplier Hopf ∗-algebra in the sense
of Van Daele,

▶ But we have not been satisfied with this result!



Multiplier Hopf ∗-graph algebras

▶ Let us invite back the vector space G, consisting of the
(n − 1)- locally finite graphs iG, to the scene.

▶ This is a unital ∗-monoid algebra, and in order to have a
∗-multiplier Hopf algebra, we need to define a map ∆ on G to
M(G ⊗ G), resembling the co-product and satisfying the
co-associativity condition

▶

(πi ⊗ 1⊗ 1)(∆⊗)(∆(πj)(1⊗ πk))

=

(⊗∆)((πi ⊗ 1)∆(πj))(1⊗ 1⊗ πk),

▶ Such that ∆(πi )(1⊗ πj) and (πi ⊗ 1)∆(πj) belong in G ⊗ G,
for any πi , πj , πk ∈ G.
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Multiplier Hopf ∗-graph algebras

▶ But now the question was that

▶ How can we define such a map for a graph algebra consisting
of graphs?

▶ As the previous constructions suggest, the idea is to
implement the graph C ∗-algebra C ∗(S ,P) associated with
πi s. In this case, we will obtain n different multiplier Hopf
∗-graph algebras.

▶ And we have the following result concerning the first initial
examples of the multiplier Hopf ∗-graph algebras.
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Multiplier Hopf ∗-graph algebras
▶ For the graph C ∗-algebra C ∗(S ,P) := C ∗(πn) = Mn2(C), and

the Cuntz-Krieger nG-family

S =


Seii := Ei+1,1

Seij := Ej ,1 for j ≥ i

Seij := E1,i for i ≥ j

,

▶ define

∆ :O(Mn2(C))[t−1]→ M(O(Mn2(C))[t−1]⊗O(Mn2(C))[t−1])
(4)

Ei ,j 7−→ Ek,h ⊗ Eo,r := Eℓ,m, (5)

for ℓ = Pk
o and m = Ph

r , expanded linearly on whole of
O(Mn2(C))[t−1]. Then ∆ is a coproduct on
O(Mn2(C))[t−1] = O(Gl(n)), and (O(Gl(n)),∆) is a
multiplier Hopf ∗-graph algebra, for
i , j , k , h, o, r ∈ {1, · · · , n2} and ℓ,m ∈ {1, · · · , 2n2}.
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Multiplier Hopf ∗-graph algebras
▶ Also there exists a unique linear map ϵ : O(GL(n))→ C

taking Ei ,j to δij such that

(ϵ⊗)(∆(Ek,ℓ)(1⊗ Eo,r )) = Ek,ℓEo,r (6)

(⊗ϵ)((Ek,ℓ ⊗∆(Eo,r )) = Ek,ℓEo,r , (7)

for all Eo,r ,Ek,ℓ associated to all Xo,r ,Xk,ℓ ∈ O(GL(n)), and ϵ
is a homomorphism.

▶ There is a unique linear map S : O(GL(n))→ M(O(GL(n)))
taking Ei ,j to Ej ,i , associated with Xi ,j and Xj ,i respectively,
such that

m(S⊗)(∆(Eo,r )(1⊗ Ek,ℓ)) = ϵ(Eo,r )Ek,ℓ (8)

m(⊗S)((Eo,r ⊗ 1)∆(Ek,ℓ)) = ϵ(Ek,ℓ)Eo,r , (9)

for all Eo,r ,Ek,ℓ as above, and m denotes multiplication,
defined as a linear map from M(O(GL(n)))⊗O(GL(n)) to
O(GL(n)) and from O(GL(n))⊗M(O(GL(n))) to O(GL(n)).
The map S is an anti-homomorphism.
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The second toy example

▶ Let us have some colors in our mathematics!

▶ In our study, the vertices of our graphs will be colored in three
colors red, blue, and green.

▶ It means that the vertex chromatic number will be 3.
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The second toy example; Continuation
▶ Consider the following directed colored simple graph, which is

almost the same as Π2, but undirected and colored

u

v

k

w

e h

f g

j

Figure 6: Two connected graph Sq2



The second toy example; Continuation

▶ Let us try to enlarge Sq2 in a very structural way and to
obtain Sq3.

▶ Note that, for Sq3 we have, χv (Sq3) = 3, K (Sq3) = 4, and
the edge chromatic number χe(Sq3) = 4.



The second toy example; Continuation

▶ Let us try to enlarge Sq2 in a very structural way and to
obtain Sq3.

▶ Note that, for Sq3 we have, χv (Sq3) = 3, K (Sq3) = 4, and
the edge chromatic number χe(Sq3) = 4.



The second toy example; Continuation

▶

u

v

k

w

l

m

n

o

e

h

f g

n

m

o

pr q

j

Figure 7: Four connected graph Sq3



The second toy example; Continuation

▶ Let us move one more step further and create Sq4.

▶ Note that, for Sq4 we have, χv (Sq4) = 3, K (Sq4) = 6, and
the edge chromatic number χe(Sq4) = 6.
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Figure 8: Six connected graph Sq4



The second toy example; Continuation

▶ Note that the process of enlarging the set of graphs Sqi will
continue, and we call this special set of graphs with
Gs = {Sqi |i ≥ 2}.

▶ Γ0 will be the null graph, the graph with no edges.

▶ let Γ = (Γ0, Γ1) ∈ Gs/{Γ0} be a graph with set of vertices Γ0

and set of edges Γ1, such that #Γ0 = n2 − (n − 2)2.

▶ Then for n ∈ {3, 4, · · · }, the number of edges will be

#Γ1 = 1 + (n − 1)(4n − 3), (10)

and the number of Hamiltonian paths will be

#HΓ = 10n + (2n − 1)(2n − 9). (11)
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Graph colored algebra

▶ For i ∈ {3, 4, · · · }, the graphs in Gsi := Sqi will consists of
two layers. The inner, which is a (i − 2)× (i − 2) lattice array
of vertices, and the outer layer, which is a 2× 2 lattice array.

▶ Let Vb,Vg ,Vr be the set of blue, green, and red vertices,
respectively, and let Γ1, Γ2 be in Gs .
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Graph colored algebra

▶ Then the connect and overlay operators will be defined as
follows for graphs Γ1 = (Γ01, Γ

1
1) and Γ2 = (Γ02, Γ

1
2).

Γ1 + Γ2 :=
(
Γ01 ∪ Γ02, Γ

1
1 ∪ Γ12

)
(12)

Γ1 → Γ2 :=
(
Γ01 ∪ Γ02, (Γ

1
1 ∪ Γ12)/{Vb → Vb & Vr → Vr & Vg → Vg}

)
,

(13)

Γ0 → Γ := (Γ0, Γ1), ∀Γ = (Γ0, Γ1) ∈ Gs and Γ0 the null graph.
(14)

▶ Then, the set Gs will have a unital nondegenerate ∗-monoid
algebra structure equipped with the above binary operations,
together with the identity element Γ0, and the diagrammatic
illustration as in Figure 5, the illustration of the set of n − 1
graphs iG.
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C ∗-colored graph algebras

▶ In order to move to the C ∗-graph algebra case, we need to
work with the directed graphs.

▶ Consider the outer layer with Lo and the inner layer with Li .

▶ Consider the red and green vertices in the outer (and inner
layer) with rLo (rLi

) and gLo (rLi
) respectively.

▶ Consider the set of red and green vertices with
Or := {Orj | j ∈ {1, · · · , i − 2}},Og := {Ogj | j ∈
{1, · · · , i − 2}}, Ir := {Irj | j ∈ {1, · · · , i − 2}}, and
Ig := {Igj | j ∈ {1, · · · , i − 2}}, in outer and inner layers,
respectively.
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C ∗-colored graph algebras; Continuation

▶ Then, the orientation of the graphs in Gs will be naturally
defined as follows.

▶ 1. The vertices of the graph Γ ∈ Gs will be connected unless they
are in the same color category.

2. rLi ↔ gLi & rLo ↔ gLo ,
3. Igj → Orj′ & Orj′′ → Igj ,
4. Irj → Ogj′ & Ogj′′ → Irj .

▶ for j ′′ ̸= j ̸= j ′ (meaning that the above connections are
between different vertices with different colors).
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C ∗-colored graph algebras; Continuation

▶ For example, Sq3 will change as follows and will be called Sqd3 .
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Figure 9: Five connected directed graph Sqd3



C ∗-colored graph algebras; Continuation

▶ Sqd3 has 28 Hamiltonian paths.

▶ The plan is to associate each special edge involved in each
special Hamiltonian path a partial (matrix) isometry Si and
to each vertex an orthogonal projection Pi ,

▶ and look for possible graph Cuntz-Krieger families, and to see
if they produce infinite or finite graph C ∗-algebras.

▶ For some reason we mostly prefer the finite ones!
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C ∗-colored graph algebras; Continuation

▶ But before doing so, let us have a look at Sqd4 .



Figure 10: Seven connected directed graph Sqd4



C ∗-colored graph algebras; Continuation

▶ Sqd4 has 216 Hamiltonian paths.

▶ For n ∈ {3, 4, · · · }, there are n − 2 sink and source vertices in
Sqdn .

▶ and number of edges and vertices in Sqdn is equal to
26(n − 2), and 4(n − 1), respectively.

▶ and Sqdn has the vertex chromatic number χv (Sq
d
n) = 3, and

the edge chromatic number χe(Sq
d
n) = 2n.
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C ∗-colored graph algebras; Continuation

▶ One might be interested in proving that the number of
Hamiltonian paths of Sqdn for n ∈ {3, 4, · · · } is as follows

#HSqdn
= 7(n + 1) + 188(n − 3). (15)



C ∗-colored graph algebras; Continuation
▶ As a reminder, let us recall the following statement, stated as

a claim in one of our papers and then proved in our next
paper.

▶ For Gn = (G0n ,G1n) the associated directed locally finite graphs
with K[Mq(n)], and Πn the associated adjacency matrices,
and H := ℓ2(N) the underlying infinite dimensional Hilbert
space. The claim is that the set S , defined as

{Si | for fixed 1 ≤ i ≤ (n3 + n2)(n − 1)

2
},

for Si :=
∑∞

j=1
iEE j−A,(n2−1)j−D , is a Cuntz-Krieger Gn-family

for D ∈ {0, · · · , n2 − 2}, and E depends on the degree of the
exit edges to the vertex ehk , where i is considered as an exit

edge, i.e. if
→
deg hk = 2, then we will have E = 2(n2 − 1), and

if it is 3, then we will have E = 3(n2 − 1), and so on, and

A ∈ {0, · · · ,
→
deg hk × (n2 − 1)}, and gives us a graph

C ∗-algebra structure C∗(Gn).
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C ∗-colored graph algebras; Continuation

▶ Then we have the following claim and a minor result after
that.



C ∗-colored graph algebras; Continuation

▶ Let n ∈ {3, 4, · · · }, and Γ = (Γ0, Γ1) be an arbitrary colored
directed graph with chromatic vertex number χv (Γ) and
|Γ0| = (χv + 1)(n − 1), with n − χv + 1 equal number of sink
and source vertices. And let An be the associated adjacency
matrix, and H := ℓ2(N) be the underlying infinite dimensional
Hilbert space. Then the claim is that the set

S = {Si | for fixed 1 ≤ i ≤ 26(n − χv + 1)},

for Si :=
∑∞

j=1
iEE j−A,(n2−1)j−D , is a Cuntz-Krieger G-family

for D ∈ {0, · · · , n2 − 2}, and E depends on the degree of the
exit edges of the vertex ehk , where i is considered as an exit

edge, i.e. if
→
deg hk = 2, then we will have E = 2(n2 − 1), and

if it is 3, then we will have E = 3(n2 − 1), and so on, and

A ∈ {0, · · · ,
→
deg hk × (n2 − 1)}.

S gives us an infinite-dimensional graph C ∗-algebra structure
C∗(Γ).



C ∗-colored graph algebras; Continuation

▶ And we have the following immediate result.

▶ For Sqd3 , and its adjacency matrix A3, let H := ℓ2(N) be the
underlying infinite dimensional Hilbert space. Then the set

S = {Sei :=
∞∑
j=1

iEE j−A,8j−D | for fixed 1 ≤ i ≤ 26},

is a Cuntz-Krieger A3-family for D ∈ {0, · · · , 7},
E ∈ {16, 24, 32, 48}, and A ∈ {0, · · · , E} depending on the
chosen edges, and gives us the graph C ∗-algebra structure
C∗(Sqd3 ).
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Looking for a solution

▶ Not all graphs have quantum symmetry, as not all of them are
symmetrical.

▶ We say a graph Γ possesses quantum symmetries, or in other
words, its quantum automorphism group GQAut(Γ) is not
trivial if there exists a unique noncommutative magic unitary
matrix u = (uij)i ,j such that we have uAΓ = AΓu.
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Looking for a solution

▶ One may verify that, the following matrix

cAd
3 =



1 0 0 0 0 0 0 0
0 0 0 p 0 0 1− p 0
0 0 0 0 q 1− q 0 0
0 1− p 0 0 0 0 p 0
0 0 1− q 0 0 q 0 0
0 0 q 0 1− q 0 0 0
0 p 0 1− p 0 0 0 0
0 0 0 0 0 0 0 1


,

commutes with Ad
3 , the adjacency matrix of Sqd3 only if we

have p = q.

▶ So, Ad
3 does not possess any quantum symmetries, and for

p ∈ {0, 1} we will get two different commuting matrices!

▶ And this is true for all graph s Sqdn for n ∈ {3, 4, · · · }!
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Concluding Remarks

▶ Concerning what I said, there are many open directions to
tackle.

▶ The first question is about proceeding with multiplier Hopf
(∗-)graph algebras by just employing the graph algebra
structures consisting of (directed) graphs. Which is not an
easy job to consider!

▶ Another direction could be proposed by using the generalized
definition of the magic unitary matrices. It might be included
in our next work!

▶ Another interesting direction or better to say question, is to
find a graph, directed or undirected, with trivial automorphism
group and nontrivial quantum automorphism group!



Concluding Remarks

▶ Concerning what I said, there are many open directions to
tackle.

▶ The first question is about proceeding with multiplier Hopf
(∗-)graph algebras by just employing the graph algebra
structures consisting of (directed) graphs. Which is not an
easy job to consider!

▶ Another direction could be proposed by using the generalized
definition of the magic unitary matrices. It might be included
in our next work!

▶ Another interesting direction or better to say question, is to
find a graph, directed or undirected, with trivial automorphism
group and nontrivial quantum automorphism group!



Concluding Remarks

▶ Concerning what I said, there are many open directions to
tackle.

▶ The first question is about proceeding with multiplier Hopf
(∗-)graph algebras by just employing the graph algebra
structures consisting of (directed) graphs. Which is not an
easy job to consider!

▶ Another direction could be proposed by using the generalized
definition of the magic unitary matrices. It might be included
in our next work!

▶ Another interesting direction or better to say question, is to
find a graph, directed or undirected, with trivial automorphism
group and nontrivial quantum automorphism group!



Concluding Remarks

▶ Concerning what I said, there are many open directions to
tackle.

▶ The first question is about proceeding with multiplier Hopf
(∗-)graph algebras by just employing the graph algebra
structures consisting of (directed) graphs. Which is not an
easy job to consider!

▶ Another direction could be proposed by using the generalized
definition of the magic unitary matrices. It might be included
in our next work!

▶ Another interesting direction or better to say question, is to
find a graph, directed or undirected, with trivial automorphism
group and nontrivial quantum automorphism group!



Concluding Remarks

▶ Looking for another sitting quantum group between Sn and
S+
n could be an interesting study to consider. For example, for

n = 4 and n = 5, it is known that there are no such
intermediate quantum groups, but for the other cases the
answer is still unknown!

▶ But one of my fantasies is looking for a graph or a set of
graphs with their automorphism groups equal to An the
alternating group. And then try to find if they possess
quantum symmetries or not. If they have, then try to see
what is it, and just call it A+

n , or just prove that such kind of
graphs don’t have quantum symmetries, and so there is
nothing to call it A+

n !



Concluding Remarks

▶ Looking for another sitting quantum group between Sn and
S+
n could be an interesting study to consider. For example, for

n = 4 and n = 5, it is known that there are no such
intermediate quantum groups, but for the other cases the
answer is still unknown!

▶ But one of my fantasies is looking for a graph or a set of
graphs with their automorphism groups equal to An the
alternating group. And then try to find if they possess
quantum symmetries or not. If they have, then try to see
what is it, and just call it A+

n , or just prove that such kind of
graphs don’t have quantum symmetries, and so there is
nothing to call it A+

n !



References:

Banica, T. Quantum permutation groups. arXiv preprint
arXiv:2012.10975 2020.

Raeburn, I. Graph algebras. American Mathematical Soc.,
2005, No. 103.

Razavinia, Farrokh, and Haghighatdoost, Ghorbanali. From
Quantum Automorphism of (Directed) Graphs to the
Associated Multiplier Hopf Algebras. Mathematics, 2024,
12.1: 128.

Razavinia, Farrokh. Into multiplier Hopf ∗-graph algebras.
arXiv: 2403.09787, 2024.

Razavinia, Farrokh. A route to quantum computing through
the theory of quantum graphs. arXiv: 2404.13773, 2024.



References (continuation):

Razavinia, Farrokh. C ∗-Colored graph algebras. arXiv preprint
2025 arXiv:2504.16963.

Rollier, L.; Vaes, S. Quantum automorphism groups of
connected locally finite graphs and quantizations of discrete
groups, arXiv:2209.03770, 2022.

Van Daele, A. Multiplier Hopf algebras. Transactions of the
American Mathematical Society, 1994, 342.2: 917–932.

Voigt, Ch. Infinite quantum permutations. Advances in
Mathematics, 2023, 415: 108887.

Wang, S. Quantum symmetry groups of finite spaces.
Commun. Math. Phys., 1998, 195:195–211.



Thank You For Your Time!

My email address : f.razavinia@phystech.edu

f.razavinia@phystech.edu

	Introduction

